ARMADILLO BASIC SPECIFICATION

SECTION 1

ARMADILLO BASIC SPECIFICATION

1.1 General Features

Armadillo BASIC will execute user programs from CPU RAM,
with program sizes up to &3K bytes. Each array will be to &4K
bytes (BK reals, 32K integers, 1&K strings). The stack will be
limited +to 4K bytes. Otherwise the only memory restriction is
the total available RAM.

Extended BASIC will be a %true extension of the standard
interpreter, rather than a separate interpreter that just happens
to share a few routines. Designing it this way should allow a
smaller {(or more powerful) Extended BASIC, and one that is easier
to maintain than the current package.

Execution of BASIC programs from GROM will be supported, but
access to subprograms in GPL in command modules will not be
supported. PRK., Statistics., S~F Administrative, etc.
##WILL##NOT##WORK## because of such statements as Call A(. ..).

The following subprograms will be added to console BASIC, to
make up for the fact that command module subprograms will not be
supported.

CALL SAY,SPGET (as in the Speech Editor)

CaALL INIT, L.OAD: LINK, PEEK, POKEV, PEEKYV, CHARPAT {(as in the
Editor/Assembler)

NMotice that BASIC programs that use the PRK subprograms or
the Carlisle Phillips "cheater" package will not run.

Texas Instruments 1~1 PRELIMINARY

-

W

ARMADILLO BASIC SPECIFICATION

i.2 Added Features

1.2.1 Screen Access.

A new screen handler will be used. It will support faster
scrolling, windowing., and access to all VDP modes. Alternate 80-
column video may be provided if a definition of it can be
supplied in time.

CALL SCREEN(background—color) {current usage)
CALL SCREEN(background, foreground)
(CALL SCREEN(background, foreground, mode)

CALL SCREEN{(background, +foreground, mode, left—margin.
right-margin, top-margin, bottom—margin)

Modes will include pattern, multicolor, text and bit—-map.
The default is pattern mode with left and right margins of 2 and
top and bottom margins of O.

Calll. LINE(yl, x1:y2: x2: color) will draw a 1line segment in
bitmap or multicolor mode. If the color is omitted, black is
assumed.

CAaLL DOT(y.x,color? will draw a dot of the given color in
bitmap or multicolor mode. If the color is omitted, black is
assumed.

1.2.2 GSprites.

Sprites will be accessible in all modes except text. They
will be accessed as in Extended BASIC, except that 32 sprites
will be available.

1.2. 23 Integers.

BASIC will implement an integer data type. for speed and
space efficiency. The default numeric type is still real.

Texas Instruments 1—-2 PRELIMINARY

ARMADILLO BASIC SPECIFICATION

1.2.4 Multiple-statement Lines.

Standard BASIC will include multiple—statement lines and the
corresponding enhancements to the IF-THEN-ELSE statement.

1.2.5% Program Chaining.
Standard BASIC will implement RUN as a statement., for

chaining. RUN will be enhanced to accept an arbitrary string
expression as an argument, instead of just a constant.

1.2.6 Accept and Display.

Standard BASIC will include a simplified form of accept and
display, and a function TERM to return the function code that
ended the input (proceed, enter. up. down, etc.). Only the AT
and SIZE clauses will be supported.

1.2.7 Loading and Saving Programs.

While BASIC is rTunning. only 24K bytes of RAM can be mapped
into the leogical address space. Thus memory image saves and
loads (i.e. PROGRAM files) will be limited to 24K. (This
assumes that all of the DERs are written so that they can use CPU
RAM buffers.) Programs that are larger than 10K will be saved in
the same sequential +ile format that Extended BASIC currently

uses for programs too large to fit in VDP RAM. ({ INTERNAL.,
VARIABLE 2543.
Problem: A& cassette camnot currently handle variable files or

records longer than 192.

BASIC will alsoc be able to load DISPLAY, VARIABLE B0 text files
of the type produced by LIST and by the text editors. This type
of loading will crunch each line as it is input. Loading will be
slower than the standard binary loads. but this will permit
lpading foreign programs (from RSZ32) as well as uvsing text
editors on BASIC programs.

1.2.8 Assembly Lanquage Support.

The default condition is that BASIC will use all of
available RAM for program and data. Thus the user must allocate
some RAM before assembly language can be loaded or accessed.
This will be done in the CALL INIT statement.

CALL INIT will allocate BK bytes of RAM for the user and
will load utility routines into the first 2 or 3 K of it CaLL

Texas Instruments i-3 PRELIMINARY

ARMADILLO BASIC SPECIFICATION

INIT(X) will allocate X K bytes of RAM for the user. The minimum
is 4, and the maximum is &4 (or as much as remains after allowing
for the current BASIC program & data and DER allocations). &
value of 3 or less will be treated as CALL INIT{(0), which will
return all allocated RAM to BASIC.

The wutilities will include NUMREF, NUMASG, STRREF, S5TRASG,
L.OADER, DSRLNK, GPLLNK, XMLLNK, etc. as in the Editor/Assembler
and Extended BASIC. Upon a CALL LINK, the BLWP vector table will
be mapped in at >2000 (compatible with Extended BASIC) and all
other allocated RAM at >A000. Note that the loader can directly
load only 24K of RAM. even though 64K may be allocated. Absolute
origin code which loads on the 4A may not load properly on the
Armadillo. (e. g. the SAVE utility in the Editor/Assembler or
the text—to—speech tables in the disk text—to-speech package.

1.3 Speed Enhancements
The following functions will be faster than 99/44A BASIC, due

primarily to translation of GPL to machine code, and extra
scratchpad RAM.

Screen access and scrolling

Formatting numbers for print (convert-number—to-string)

Listing and editing programs

Intrinsic functions (8IN, EXP, etc.)

String handling

Random number generation

Texas Instruments 1-4 PRELIMINARY

{

ARMADILLO BASIC SPECIFICATION

1.4 Extended BASIC Features

Extended BASIC will still have the following features not

found in Standard BASIC:

User—written subprograms with parameters and local
variables

Program merging

Functions PI, MAX, MIN, RPT

Logical operators AND, OR, XOR. NOT

DBlock statements DO, LOOP, UNTIL., WHILE, EXIT (From new
ANSI standard; new for Armadillo version)

Full ACCEPT and DISPLAY statements

Formatted output via PRINT USING and DISPLAY USING

Tail remarks

Errvor, warning, break handling under user control

Texas Instruments 1-5 PREL. IMINARY

DIFFERE&CES BETWEEN TI EXTENDED BASIC AND ARMADILLO BASIC

DATE

lszaazsa

3/22/83

3/22/83

3/22/83

3/22/83

CHANGE

Numeric variables can be of two types: REAL or INTEGER.

All numeric variables are automatically assigned the default
type of REAL {(floating point) unless explicitly declared
otherwise in a tuype statement.

The ALL clause in a numeric type statement changes the default
type to the declared type.

Example:

INTEGER ALL

The INTEGER ALL statement changes the default type to INTEGER.
NOTE: If the ALL specification is used, the statement should
precede the first variable reference (this includes the DIM
statement).

REAL (floating point) variables are the same as the Numeric

Constants in Extended BASIC.

The formats for the REAL statement are:

REAL ALL

REAL wvariable-name (where the variable-name is any numeric
variable name or array declaration or
a list of these things)

The INTEGER statement assigns the INTEGER type to a wvariable

or list of variables.

An advantage to INTEGER wvariables is that they are processed

faster and take up less space than REAL wvariables.

An INTEGER variable may have a value of +327&7 through -32748.

Formats:

INTEGER ALL

INTEGER wvariable-name (where the variable—-name is any numeric
variable name or array declaration or
a list of these things)

Example:

INTEGER A,B,C {(variables A, B: and C are declared to
be type INTEGER)

There are now several ways to dimension an array.
To dimension an array A to size 10 and type REAL:
100 DIM A(10)
or
100 REAL A(1OQ)
or
100 REAL ALL
110 DIM AC1O)
To dimension an array A to size 20 and type INTEGER:
100 INTEGER A(20)
or
100 INTEGER ALL
110 DIM A(20)
If you specify:
100 DIM ACLO)
110 REAL A(10)
A name conflict error will result, since you have declared the
array twice.

User-Defined Functions are 1 program line in length.

UDFs now support up to seven parameters (instead of one).
The type of the function can be specified as INTEGER, REAL.
or % (Character).

UDFs still can not be defined recursively.

Format:

DEF function—-namel{parameter—-list)I=expression

Examples:

DEF F(X,Y.,Z)=expression (defaults to a REAL function)

DEF INTEGER F(X. Y, Z)=expression (specifies an INTEGER function)
The following is also legal and prints a result of i4.

100 DEF F({X, Yi=X+Y+4

110 PRINT F(F(1,2),3)

3/22/83 The type of the variables which appear in a parameter-list of
a DEF or SUB statement can also be specified as INTEGER, REAL,
or % (Character).

Examples:

DEF F(INTEGER X. REAL Y., INTEGER A)=expression
DEF F${(A%$, B%, C$)=expression

SUB F(INTEGER A. REAL X}

SUB F({A%, B$)

3/22/83 The VALIDATE clause in the ACCEPT statement has the following
data-type additions:
ALPHA permits all uppercase and lowercase alphabetic characters.
LALPHA permits all lowercase alphabetic characters.

3/22/83 The VERSION subprogram will return a value of 200.

3/22/83 The FOR-TO-STEP statement executes much faster when a control—
variable which has been declared as INTEGER type is used.

3/22/83 When a numerical expression is evaluated, INTEGERS are converted
to REAL only when necessary.
This means that when & numerical expression contains only INTEGER
values, all evaluvation is done in INTEGER arithmetic.
Example:
100 INTEGER ALL

200 C=A+B

No conversions are necessary in the above example.

If an expression contains both INTEGER and REAL wvalues, conversion
from INTEGER to REAL is done only when necessary.

Example:

100 INTEGER A, B, C

200 C=A+B+3. 45

In this example, A and B are added, the result is converted to REAL
and is then added to 3. 45 The final result is then rounded to the
nearest integer and assigned to C.

3/22/83 There will be two or three graphics rvoutines which will be added.
Further information on these will follow.

3/22/83 The most change will occur in the Graphics Modes.
There will be six modes:
Graphics 1 (pattern mode)

Text
Split—-1 = (Graphics 2 with text on top third of screen)
Split—-2 {Graphics 2 with text on bottom third of screen?

Graphics 2 (full—-screen)
Multicolor

3/22/83 The following subprograms and statements will have some changes
due to the way they respond in the various Graphics Modes.
COLOR
HCHAR

ad

VCHAR

ACCEPT

INPUT

DISPLAY

PRINT

GCHAR

The changes will come later.

DIFFERENCES BETWEEN TI EXTENDED BASIC AND ARMADILLO BASIC

DATE CHANGE

g . e s e st s i

l4/2éf83 The following describes the various Armadillo screens.

The first screen is the color bar screen which is layed out
as follows:

e o e et o e e e e
H color bar H
o e e e e e e e L o e e e e o e +
15 1
emblem

TEXAS INSTRUMENTS

ADVANCED HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN
e e e - e

color bar H

[]
L}
+ o e e R

21983 TEXAS INSTRUMENTE V1.0

The ADVANCED HOME COMPUTER line is subject to change.

The next screen is the menu. This screen currently has three
options which are lettered rather than numbered.
The options are:

LAl FOR P-SYSTEM
[B1l FOR SET SPEED
[C1 FOR TI BASIC

The wording of choice [A]l is subject to change.

I# [B] is selected, another menu will appear. It also has
three options which are also lettered.
The options are:

LAl SLOW
LBl 9%9/4A SPEED FOR GAMES
£C1 FULL SPEED

Option [A] SLOW:

The main advantage to having a slower speed, is that some

games execute properly at this speed and therefore could be

played at this easier level. However, this is game dependent
l and wvaries drastically from game to game. Munchman plays

well at this speed, but Parsec does not.

Option [B1 99/4A SPEED FOR GAMES:
Games rvun at this speed should be the same as they were on
the 99/44.

Option [C1 FULL SPEED:

BASIC always uses this speed.

Some games can be played at this speed, but once again it is
game dependent.

After the speed selection has been made, the main menu screen
Teappears.

If the L[C] option. FOR TI BASIC, is chosen from the main menu,
the following information and prompt appear:

TI BASIC Ready V1.0
xxxxxx Butes free
o

The xxxxxx is the number of bytes available, and wvaries depending
upon the amount of memory and the number of devices the system
has.

TI BASIC always uses the FULL SPEED speed.

DIFFERENCES BETWEEN TI EXTENDED BASIC AND ARMADILLO BASIC

DATE CHANGE

=== smes et

l#!QéIBS It is now possible to change existing line numbers.
To change a line number. enter the Edit Mode by typing a line
number followed by either FCTN E (UP) or FCTN X (DOWN), and then
use the FCTN § (LEFT) and FCTMN D (RIGHT) to space over to the
digit(s) of line number that you wish to change. Changing a line
number does not delete the original line, and so can be used to
duplicate a line.

4/26/83 There are now six Graphics Modes.
Format: CALL GRAPHICS(mode)
Valid modes are:
Mode Description

1 Graphics I — 32 col x 24 vow grid of pattern positions
(B x 8 pixel blocks). Color {(per 8 characters) and a
maximum of 32 sprites is available.

Alphanumeric and special characters can be used.

2 Text — 40 col x 24 row alphanumeric grid (6 x 8 pixel
blocks}. Only 2 colors (foreground and background) at a
time may be used.

Mo sprites are available.

3 Split I - Split screen where the top 1/3 of the screen
displays text (32 x 8 alphanumeric) and the bottom 2/3‘s of
the screen displays high resoclution graphics (256 x 128).
Color is available for each character in the Graphics I
portion of the screen and for each 8 dots on Graphics II

l portion of the screen.
A maximum of 32 sprites is available.

4 Split II — Same as Split I mode, except the top 2/3°s of the
screen displays high resolution graphics (256 x 128) and the
bottom 1/3 of the screen displays text (32 x 8 alphanumeric).

5 Graphics II — High resolution color graphics (256 x 192).
The result from the DISPLAY, PRINT, INPUT., ACCEPT., and LINPUT
statements is not wvisible in this mode.

A maximum of 32 sprites is available.

& Graphics III - Low resolution color graphics 64 x 48 blocks
(4 x 4 pixel blocks). Each block is individually assigned
a color. The rvesult from the DISPLAY., PRINT., INPUT, ACCEPT,
and LINPUT statements is not visible.

A maximum of 32 sprites is available.

4/26/83 There is a new subprogram, CALL MARGINS, which defines the screen
margins.
Format: CALL MARGINGS(left,right, top,bottom)
where left,right, top, and bottom are integers which
represent the number of columns or rows to indent the
SCTEeen margins.
This means all 32 columns and 24 Tows can be used. or smaller
"windows"” can be defined as desired.
There can only be one "window" defined at a time.
TI Extended BASIC has only one window which can be defined as:
l cCALL MARGINS(Z2,2,0,0)
in Armadillo BASIC.
This subprogram affects the following:
Scrolling
CLEAR subprogram
DISPLAY statement (The position (1,1} is the upper left—hand
corner of the current window. }

i

4/246/83

4/26/83

ACCEPT statement (The position (1,1) is the upper left—-hand
corner of the current window.)
This subprogram does not affect:
HCHAR subprogram
YCHAR subprogram
GCHAR subprogram
Graphics portions of the screen in modes 3. 4, and 5.
Mode & is not affected at all.

There are four graphics subprograms which can only be used in
modes 3, 4, and 5.

Format: CALL DCOLOR(foreground-color: background—color)
This specifies the color to use in the DRAW, FILL,
HCHAR, and VYCHAR subprograms. The default color
is black on transparent.

Format: CaLL DRAW(type.yl,x1,y2, x2L:y3, x3,y4, x413L,... 1}
where type is:
1 - For DRAW (using DCOLOR)

O - For erase

-1 — For reverse (no color change}
where y is dot—-row and x is dot—column.
This routine draws a line from the starting point
to the ending point. The line type is specified in
the CALL DRAW statement.

Format: CalLL DRAWTO(type,yl, x1L,y2, x21L,. .. 1)
This routine draws a line from the current position
to the point specified. The line type is specified
in the CALL DRAWTO statement.

Format: CaLL FILL{(dot-row, dot-column}
This routine fills all pixels surrounding and
including the pixel defined by the dot—-row and
dot—column given in the CALL FILL statement.
This routine fills until a pixel of the foreground
color or the screen edge is encountered.
Filling may also stop if the figure is too
complicated.

Format for the CALL COLOR statement depends on the graphics mode.
The format:

CaLL COLOR{(#sprite-number, foregroundL,... 1}

is valid for all modes, except mode 2.
Additional formats are:

Mode Format

i CALL COLOR{(character—-set, foreground. backgroundf,... 1)
2 CALL COLOR results in an error.
3 calLl. COLOR(character-code, foreground, backgroundL.,. .. 1)
4 CALL COLOR(character-code, foreground, background[.... 1)
5 CallL COLOR results in an error, unless for a sprite.
& CALL COLOR(row, column,colovr,... 1)

where row is 1 to 48

and column is 1 to &4.

The Color Codes have remained the same as in TI Extended BASIC.
The Character Sets for mode 1 have changed.

The new Character Sets are:

Set MNumber Character Codes

e

4/26/83

4/246/83

07
8-15
16-23
24-31
32-39
40-47
48-335
S6—-63
64-71
72-7%
80-87
88-935
F6—-103
104-111
132=119
120-127
128-135
1346—-143
144-151
152~-15%9
160-167
168173
176-183
184-191
192197
200-207
208-215
216-223
224-231
232239
240-247
248-255

The CAlLL SCREEN subprogram has been modified.
Format: CALL SCREEN(background-colorl:; foreground—-colorl)

This works in all six modes, but the foreground
ctolor is only effective in mode 2 (Text Mode).
I+ the foreground color is not specified. the
foreground color is not affected.

The CALL HCHAR and CaALL VCHAR subprograms have the same format
as in TI Extended BASIC, but have different results depending
on the cturrent mode.

Mode Rows
1: 24
1: 24
i:16
1: 14
1: 24

s

Columns

1:32

i:40

1:32 Character position on graphics part of screen.
1:32 Character position on graphics part of screen.
1:32

Ignored.

DIFFERENCES BETWEEN TI EXTENDED BASIC AND ARMADILLO BASIC

CHANGE

DATE

again.
i kEu

These changes are attached.

The keyboard on the Armadillo has been modified,

The key codes have changed.

lexaaxas

key has switched places with the

This is the new keyboard:

The QUIT.: +.

FUNCTION
SHIFTED

NORMAL.

i
i
i
1 3
[
L

)
1 3
L]
i
L]

e e

e

{ERASE | CLEAR ! BEGIN!PROCD!

- e ke St SR8 e St S0t i S Bt St s SOURS St S W

endt |

—— - -

]
¥
1
1
]
L

{REDO | BACK

AID
%
7

- -

FCTN

-

-

- -

D

LEFTIRIGHT
g

%
¥
t
¥

A

-

-

e s v svvas oo v St S5t G428 Snin Sk e vt Hiede SH6AS 48404 IBERS S R S VL SHASE PSS SEUS SEFY WSS SLe SRS POV Saisk SBLSS SSSSE SSEE SSSES SESFS SHLSS SILN 40007 SESPR S9SS Seees eews Semes s FSF FYSE SV Sesem FERSS $ESRS Sem Sumee SMSSS THee AR SRS Sewet S44Se SANES FERES Sars MSSS Sime e ey Maser imwe

- -

-

- -

2 =

—— -

SHIFT

-

k3

-

SPACE

S’

-

—-—-

- -

-

- -

-

-

-

-

L U

- -

{ENTER

"
F 4

- - -

- - -

)

rECLC - IL

)

DIFFERENCES BETWEEN 99/8 BASIC AND 99/4A EXTENDED BASIC

(1) Integer data type added. ‘INTEGER’ » ‘REAL’ keywords added.
INTEGER ALL and REAL ALL statements added.

. (2) User defined functions can have seven parameters,
instead of just one.

(3) New function FREESPACE(O). (garbage collection is side effect.)

(4) New function TERMCHAR. Returns code of terminator of last
keyboard readln. (e.g. 13 for enter.)

(5) New function VALHEX, takes string argument, returns integer
after hex to integer conversion.

(6} New subprogram GRAPHICS to change graphics mode

CALL GRAPHICS{(1) for pattern mode

CALL GRAPHICS(2) for text mode

CALL GRAPHICS(3) for split mode with text at top third
and high-res at bottom two-thirds of screen

CALL GRAPHICS(4) for split mode with text at bottom third
and high-res at top two-thirds of screen

CALL GRAPHICS(S5) for hiogh—-res mode (full screen)

CALL GRAPHICS(&) for multicolor mode

{(7) New subprogram MARGINS to set up a window within text portion
of screen. This window affects PRINT, INPUT, LINPUT. ACCEPT, DISPLAY,

TRACE output, and editing.

It as no effect on HCHAR, VCHAR, CLEAR. GCHAR.

The upper left—hand corner of the window is (1.1) for accept and
display at.

(B8) New subprograms DRAW and DRAWTO to draw or erase line segment
on hi-res portion of screen

{(?) New subprogram FILL to fill closed figure on hi-res portion of
of screen

(10) HCHAR and VCHAR subrograms enhanced to draw characters on high-res

portions of screens in modes 3-5.

(11) New subprogram DCOLOR to specify colors to use in DRAW. DRAWTO.
FILL, HCHAR. VCHAR

(12) SCREEN subprogram enhanced to support optional second parameter
as foreground color in text mode.

(13) Full 32 sprites available in all sprite subprograms

{14) Full 25& characters available in all ascii subprograms
(CHAR, CHARPAT., HCHAR., VCHAR, SPRITE, PATTERN, etc.)

{15) Full 32 color sets available on pattern mode. Mumbering is
somewhat contrived to make it an extension of 4A numbering.

(i16) COLOR subprogram has special definition while in mulficolor

“mode. Parameters are vow, column, color. Assigns colors to individual

character code in modes 3 and 4.

{(17) GCHAR subprogram has definition that depends on mode.
1,2: ascii character at(y, x) as on 4A
3-5: O or 1, the dot at (y,x) in hi-res portion of screen
& : color code of block at{y, x)

10

" L1Yg) DCcreen sScrollling oniy arreces Luriellhy WAHUUL. 41 UETOWL L WMUVLS
(pattern, margins(2,2,0,0)) no scrolling occurs along screen edges.

(19) CALL CLEAR erases entire screen. DISPLAY ERASE ALL only clears
the current window.

(20) INIT subprogram has optional parameter to specify number
lof bytes to be reserved for assembly language code. Default is
80%6. (It was about &000 in 4A Extended Basic, 32K in console
basic with editor/assembler.) Can allocate up to 24,336 bytes.

(21) Execution (by downloading) of grom basic programs is supported,
but current grom basic programs (PRK, STATISTICS, etc.) are not.

{(22) Basic cannot access GPL subprograms in a software cartridge.

(23) Strings can be 4090 bytes long, instead of being limited
to 255.

(24) File records can be up to 4090 bytes long, if the device
supports it.

(25) The OLD command will load text files (DISPLAY. VARIABLE 80)
in addition to PROGRAM and INTERNAL-VARIABLE 254 memory image files.

{(26) protected programs (a) start running as soon as they are loaded
(b) erase themselves from memory when they stop running., and
(c) are encrypted when they are saved.

(27) The RUN statement can have an arbitrary string expression
as a parameter, instead of just a constant string.

y (28) Validate types LALPHA and ALPHA added to ACCEPT statement.

(29) Keyboard click is available, with CALL LOAD(VALHEX("84BD"),1).
Can be disabled with CALL LOAD(VALHEX("84BD").0).

(30) CALL LOAD and CALL PEEK cannot be used to access the basic program.
(There is a memory mapper, and the program is not entirely mapped in. }

(31) SIZE command is deleted (see FREESPACE)

(32) Bytes put on screen with POKEV will not scroll properly.

(33) Subprograms POKEV., PEEKV added as in editor/assembler.

(34) Linking loader handles REF’s, compressed code as in editor/assembler.

(35) More special function keys will terminate an input
(BEGIN, BACK, AID, PROCEED. REDO. CLEAR)}

(3&) Control keys are ignored in an inpuft.

(37} Line numbers may be edited.

S

Tl -21234

LAST UPDATE: %/07/83
This is a list of programs that will not work on a T.I. 99/8.

Scott Foresman Addition Subtraction II. (To be re-released.)}

~Disk—~based Text to Speech.

TE-II Text to Speech. (TE-III is on the way)
All hybrid programs.

Personal Record Keeping

Statistics

Security Analysis

Perhaps some Scott Foresman administrative internal stuff.
Speak % Spell and any other programs that use the Speech Editor may not wo
Extended Basic
Anything that uses PRK

Invoice Management

Personal Report Generator will work., but doesn’t make sense any more.
Disk based Munchan, Tombstone, etc. won’t load until we put out a new load

APPENDIX: Differences between previous BASICs and Extended BASIC II

Since TI Extended BASIC II executes more rapidly than previocus BASICs.,

delay lopops do not delay a program as long as expected. Similarly.

if a negative duration is used with the SOUND subprogram, the sounds
_are executed approximately three times as fast as expected.

The INIT subprogram with no parameter allocates 8K bytes of memory.

if a parameter is specified, up to 24336 bytes (approx. 24K) may be
allocated.

TI Extended BASIC allocated approximately 6K bytes of memory.

The Editor/Assembler with Console BASIC allocated 32K bytes of memory.

The HCHAR and VCHAR subprograms will print outside the margins: but
will not scroll. This could cause unexpected results when first
entering TI Extended BASIC II since characters displayed with the
HCHAR or VCHAR subprograms could appear between the screen edge and
the margins (columns 1, 2, 31, and 32). These characters will not
scroll, but may be erased with the CLEAR subprogram.

The CHARSET subprogram restores more character codes to their default
values than previous BASICs. This includes the lower—case character set.

I# a PROTECTed program stops executing, it is now necessary to reload
the program in order to run it again.

A CALL to routines in a plug—in module will not work. Also,
OPEN #1: "SPEECH". OUTPUT for the Terminal Emulator II will not work.

The INTEGER wvariable and function type mauy cause some unexpected results.
INTEGERs are written to an INTERNAL file as a 2-byte field; REALs are
 written as an B-byte field. This means that INTEGER data type values in
la TI Extended BASIC II data file will have to be read as string values
with a 99/4 BASIC. Also. INTEGER type functions, return an INTEGER value
rather than a floating point value. This would be important if numeric
expressions were using INTEGER functions. such as: A = LEN(B%) / LEN(C%$),
since this will do integer division, rather than floating point division.

Assembly language programs which use absolute addressing with BASIC
variables or with program loading, will probably not execute.
Relocatable assembly language programs will execute correctly.
However, NUMREF may return an INTEGER value rather than a floating
point. This is denoted by a >6B in FAC+2. In addition, a string
reference errvor may occur with STRREF since it only allows strings
up to 255 characters in length, while BASIC allows strings up to
4090 characters in length.

Also, some assembly language programs worked with errors caused by
referring to addresses such as >80xx and >82xx instead of >83xx.
These programs will no longer work., since these are now valid
addresses in BASIC.

All POKEs and PEEKs as used in previous BASICs will fail. In addition.,
the ability to PEEK and/or LOAD values into program memory is not
predictable. This means LOAD cannot be used to modify a program in
memory.

The Value Stack, which contains information like: GOSUB entries.
FOR-NEXT entries, and temporary values; is now limited to 3840 bytes
(3. 75K bytes) rather than 12K bytes less BASIC usage. This means
that an infinite GOSUB loop will no longer be able to determine the
amount of program space available.

The list of reserved words has been expanded. The following words

(
TI-21234

(

are additions to the Conseole BASIC reserved word list. Words preceeded
by an asterisk (#) are additions to the Extended BASIC reserved word
list. Reserved words may not be used as variable names, and thus

may cause an error in existing programs.

ACCEPT
ALL
" #ALPHA
AND

AT

BEEP
DIGIT
ERASE
ERROR
#FREESPACE
IMAGE
#INTEGER
#LALPHA
LINPUT
MAX
MERGE
MIN

NOT
NUMERIC
OR

PI
*REAL
RPT%
SIZE
SUBEND
SUBEXIT
#TERMCHAR
UALPHA
USING
#VALHEX
VALIDATE
WARNING
XOR

Ti - 21234

ADDITIONAL ADDITIONS @9/8/83

The maximum program size is 63,230 bytes. This only includes program
text, not any variables, strings. or array space.

The maximum string length is 4090 bytes.

A string array cannot have more than 146383 elements.
An INTEGER array cannot have more than 32767 elements.
A REAL array cannnot have more than 8191 elements.

The maximum program line length is 255 characters, including the

line number and spaces. However, after a program line is "crunched"”
it has a maximum length of 160 characters. (Refer to LINES in TI
EXTENDED BASIC II CONVENTIONS for a description of "crunched" program
lines.)

Variable names are a maximum of 15 characters in length.

{

{
Ti- 21234

8/10/83

8/10/83

8/10/83

8/10/83

8/12/83

8/712/83

CHANGES TO TI EXTENDED BASIC II

CHANGE

CHARSET: Only restores character codes 32-95, inclusive.
CHARSET restores the default colors to all 25& characters.

GRAPHICS: The default for margins for all modes is 2,2.0,0.

NEW. END., GRAPHICS, BREAK: All 256 characters are restored
to their original definition.

DELSPRITE: If the ALL option is specified, all sprites are
deleted and can only reappear if they are defined by the
SPRITE subprogram. I+ a sprite—number is specified, the
sprite can reappear with the LOCATE subprogram. or be
redefined by the SPRITE subprogram.

All warning messages are printed in upper case.
{Error messages are still printed in lower case.)}

Error messages in High—Resolution and Multicolor modes
are printed in Pattern mode.

